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DETECTION OF FECAL/INGESTA CONTAMINANTS ON POULTRY

PROCESSING EQUIPMENT SURFACES BY VISIBLE AND

NEAR‐INFRARED REFLECTANCE SPECTROSCOPY

K. Chao,  X. Nou, Y. Liu, M.  S. Kim,  D. E. Chan,  C.‐C. Yang,  J. Patel,  M. Sharma

ABSTRACT. Visible and near‐infrared (NIR) spectra and samples for laboratory microbial analysis were acquired of fecal
contaminants, ingesta contaminants, and bare processing equipment surfaces (rubber and stainless steel) in a commercial
poultry processing plant. Spectra were analyzed in the visible region of 450 to 748 nm and the NIR region of 920 to 1680 nm
and microbial sampling for Enterobacteriaceae counts (EBC) was conducted for 82 fecal contaminant samples, 59 ingesta
contaminant samples, 40 bare rubber belt areas, and 40 bare stainless steel areas. Two‐wavelength band ratios in the visible
and NIR regions were selected for separating contaminants from equipment areas. Principal component analysis (PCA) was
performed to analyze the spectral data set and 2‐class soft independent modeling of class analogy (SIMCA) models were
developed for comparison with band ratio classification. Fecal and ingesta contaminants were difficult to separate from each
other but both were easily differentiated from the equipment areas. The visible ratio using 518 and 576 nm correctly classified
100% of contaminant samples and 92.5% of equipment area samples. The NIR ratio using 1565 and 1645 nm correctly
classified 100% of the contaminant samples and 95% of the equipment area samples. Microbiological analysis found the
highest EBC levels for fecal contaminants; mean EBC for ingesta contaminants was significantly lower than that for fecal
contaminants. The high EBC levels for fecal contaminants indicate that these contaminants should be targeted for
spectral‐based detection methods for sanitation monitoring and verification purposes; although their EBC levels are
significantly lower, ingesta contaminants should also be included due to difficulty of separation from fecal contaminants.
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o ensure a wholesome and safe meat supply for
consumers, the USDA Food Safety and Inspection
Service (FSIS) has established policies for meat
and poultry processing in order to minimize the

risks of bacterial pathogens in meat and poultry products
(USDA, 1994). More recently, FSIS implemented Pathogen
Reduction, Hazard Analysis, and Critical Control Points
(HACCP) programs, which hold processing plants
accountable to detailed standard operating procedures
developed by the plants to meet daily sanitation requirements
(USDA, 1996). This is important to pathogen reduction
because unsanitary practices in processing plants increase the
likelihood of product cross contamination. Thus, plants must
document daily records of completed sanitation standard
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operating procedures and are subject to hands‐on sanitation
verification by FSIS inspectors.

Because poultry feces are the most likely source of
pathogenic contamination in a poultry plant, FSIS inspectors
use the established guidelines to identify fecal residues on
hard surfaces in the processing environment, including
equipment and tools. Evaluation and inspection of sanitation
effectiveness is usually performed through one or more of the
following methods: human visual inspection,
microbiological  culture analysis, bioluminescent ATP‐based
assays, and antibody‐based microbiological tests. However,
these labor‐intensive and time‐consuming procedures do not
meet the needs of the poultry processing industry for an
accurate,  high speed, and non‐invasive method that can
provide near immediate results that are useful for monitoring
the processing line in real‐time. Thus, the USDA
Agricultural Research Service has been developing hyper‐
and multi‐spectral reflectance and fluorescence imaging
techniques for use in the detection of fecal material on
chicken carcasses and on fresh fruit and vegetable products
(Kim et al., 2003; Windham et al., 2003a; Lawrence at al.,
2005; Park et al., 2005), and major developments have been
achieved towards spectral imaging inspection systems for
implementation  on processing lines. The development of
low‐cost, reliable, and portable sensor systems is also being
pursued, such as personal goggle and binocular devices (Ding
et al., 2006), to provide affordable inspection tools to
processors of all sizes. One key factor in successful
applications is the use of a few essential spectral bands, which
should not only reflect the chemical / physical information in
the samples, but also maintain successive discrimination and
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classification efficiency. These essential bands can be
determined through a variety of analytical strategies, such as
analyzing spectral difference (Liu et al., 2003; Liu et al.,
2005), performing principal component analysis (Windham
et al., 2003b), and stepwise linear regression (Williams and
Norris, 2001; Delwiche 2003).

The objective of this study was to find a method based on
visible (VIS) or near‐infrared (NIR) spectra to differentiate
fecal contaminants, ingesta contaminants, and bare poultry
processing equipment surfaces at a commercial poultry
processing plant. Visible and NIR wavelengths were selected
for band ratios to be used in classifying the contaminant and
equipment samples. Principal component analysis (PCA)
and 2‐class SIMCA (soft independent modeling of class
analogy) models were also examined for classification.
Sampling and microbiological analysis of fecal
contaminants,  ingesta contaminants, and equipment surfaces
was also performed to determine the Enterobacteriaceae
counts (EBC) associated with each sample type.

MATERIALS AND METHODS
IN‐PLANT VISIBLE AND NEAR‐INFRARED SPECTRAL

MEASUREMENT AND COLLECTION OF SAMPLES
A total of 221 samples, including 141 contaminants

(82 feces and 59 ingesta) and 80 bare areas (showing no
visible fecal or ingesta residues) on equipment surfaces
(40 samples each for bare areas on stainless steel and on
rubber belt conveyors), were collected over an 8‐day period
at a poultry slaughter plant. All fecal and ingesta contaminant
samples were scanned in‐situ from evisceration line
equipment surfaces, specifically in the areas of the rehanging
conveyor belt, venting machine, and drawing machine. The
size of each contaminant sample was between 5 mm to
10 mm in diameter, occupying a surface area of 0.20 to
0.78 cm2, which fully covered the area illuminated by the
probe (0.12 cm2) for spectral measurement. Each sample was
visually examined on‐site by a FSIS Inspector‐In‐Charge and
categorized as either a bare equipment surface sample or a
fecal/ingesta  contaminant sample.

Two portable battery‐powered spectrometer systems were
used to collect the reflectance spectra in the visible (400‐
900 nm) and NIR (900‐1700 nm) regions (fig. 1). For
measuring visible spectra, a EPP2000‐CXR spectrometer
(StellarNet Inc., Tampa, Fla.) was used with an SL1
tungsten‐krypton fiber‐optic light source (StellarNet Inc.,
Tampa, Fla.) and a R400‐7‐UV/VIS bifurcated fiber‐optic
probe (Ocean Optics Inc., Dunedin, Fla.). For measuring NIR
spectra, a EPP2000‐InGaAs spectrometer (StellarNet Inc.,
Tampa, Fla.) was used with a duplicate SL1 light source unit
and a R400‐7‐VIS/NIR bifurcated fiber‐optic probe (Ocean
Optics, Dunedin, Fla.). Spectral acquisition was controlled
using the manufacturer's software. The two fiber‐optic
probes were each made of seven optical fibers (400 �m
diameter, 0.22 numerical aperture) with six illumination
fibers encircling one detection fiber. Measurements were
made with the use of a probe holder consisting of a
non‐reflective,  open‐bottom black box with a hole through
the top to fit the fiber‐optic probe. The probe holder blocked
ambient light from the spectral sampling area so as to
maintain consistent illumination conditions and a 1‐cm
probe‐to‐sample distance at a 45‐degree measurement angle

(to minimize specular effects). Before collecting sample
spectra, a white reference was obtained from a 7‐mm thick
white Spectralon panel with nearly 99% absolute reflectance
(Labsphere, Sutton, N.H.) and a dark reference was taken by
pacing the optical probe 1 cm from the bottom of a black
cylindrical Teflon sample cell with the light source turned
off. During spectral measurement of contaminant samples,
the probe holder was carefully positioned so that the probe's
field of view (~0.12 cm2) was fully illuminated within the
area of the contaminant sample which ranged between 0.20
and 0.78 cm2. For spectral measurement of bare equipment
surfaces, the probe was positioned to ensure no visible
contaminant  residue present within the illumination area.
The integration time for a single scan was 300 ms for visible
measurements and 150 ms for NIR measurements. Each
sample spectrum was an average of 10 scans (collected at a
2‐nm interval in the visible range of 430 to 884 nm and at a
5‐nm interval in the NIR range of 900 to 1700 nm) and was
acquired in units of percentage of reflectance (relative
reflectance)  intensity (R). This data was converted to log
(1/R) values and truncated into the 450‐ to 780‐nm visible
region and 920‐ to 1680‐nm NIR region for data analysis.

Immediately  following each spectral measurement, a
sample for later microbial analysis was collected. Sterile
specimen sponges were prepared in advance, each stored in
15 mL of buffer solution in an individual plastic specimen
bag (Nasco, Whirl‐Pak, Fort Atkinson, Wis.) with a unique
identification  number. For each contaminant sample, an
unused sponge was removed from its bag, swiped across the
equipment surface to collect the fecal or ingesta material, and
placed back inside the plastic bag. For sampling of bare
equipment surfaces, a sponge was swiped across a 50‐cm2

surface framed by a plastic template (Biotrace International
Inc., USDA‐050, Bothell, Wash.). The specimen bags were
only identified by number; the corresponding sample type
(fecal contaminant, ingesta contaminant, bare rubber
surface, or bare stainless steel surface) was recorded in a
separate list referenced by bag number. The specimen bags
were placed in a Styrofoam shipping box with pre‐frozen
U‐tek (‐1°C) gel packs and shipped overnight for
microbiological  laboratory analysis the next day.

a
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Figure 1. Components of the portable visible/near‐infrared spectroscopic
system: (a) battery, (b) light source, (c) spectrometer, (d) fiber‐optic
assembly, (e) probe holder, (f) computer.
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MULTIVARIATE DATA ANALYSIS AND MODELING
The following spectral preprocessing treatments were

applied to all spectra: multiplicative scatter correction, mean
centering, and Savitzky‐Golay second derivative function
with 11 smoothing points. Within each of the visible and NIR
spectral sets, two classes of spectra were established:
contaminant  (fecal and ingesta samples) and bare equipment
surface (rubber and steel samples). Approximately
two‐thirds of each spectral set was used for the validation
data set (95 contaminant spectra and 54 bare surface spectra)
and one‐third was reserved for use as a test data set
(46 contaminant spectra and 26 bare surface spectra).

Principal component analysis (PCA) using the
PLSPlus/IQ package in Grams 32 (Version 5.2, Galactic
Industries Corp., Salem, N.H.) for general characterization of
the visible spectra of the four types of sample spectra was
performed on all the spectral data: 82 fecal contaminant
spectra, 59 ingesta contaminant spectra, 40 bare rubber
surface spectra, and 40 bare stainless steel surface spectra.
PCA was similarly performed to characterize the NIR sample
spectra.

Using the validation data sets for the contaminant spectral
class and the uncontaminated spectral class, 2‐class SIMCA
(Soft Independent Modeling of Class Analogy) classification
was developed. One‐out cross validation was used to
determine the number of principal components needed per
class model for achieving the minimum prediction error
using the validation data sets. Mahalanobis distance
calculations based on the selected models were then used to
classify samples in the validation and test data sets.

Both the visible and NIR validation data sets were also
analyzed to determine a simple wavelength ratio (A�1/A�2)
by which to classify contaminant and uncontaminated
sample spectra, where A� represents log(1/R) at wavelength
�. The 166 visible wavelengths presented 13695 possible
pairwise wavelength combinations and the 153 NIR
wavelengths presented 11629 possible wavelength
combinations for an exhaustive search for the best visible
ratio and best NIR ratio to use for classification. Using the
validation data set, the SAS procedure STEPDISC (SAS
Institute Inc., Cary, N.C.) was used to find potential
wavelength pairs for ratio‐based differentiation (Chao et al.,
2003). Using both the validation and test data sets,
classification of samples by ratios of these potential
wavelength pairs was then examined to find the best
classification ratio for each data set (visible and NIR).

MICROBIOLOGICAL LABORATORY ANALYSIS

The samples that were collected and shipped overnight in
specimen bags were processed within 4 h of receipt for
microbiological  laboratory analysis. For each individual bag,
the contents were thoroughly mixed and three serial dilutions
(100, 10‐2, and 10‐4) were prepared using buffered peptone
water (BPW). One milliliter of each dilution was plated on
Petrifilm#8482 Enterobacteriaceae Count Plates (3M
microbiology, St. Paul, Minn.) in duplicate. After incubation
at 37°C for 18 h, characteristic Enterobacteriaceae counts
(EBC) were enumerated following the guidelines provided
by the manufacturer of the Petrifilm plates. The mean EBC
for the four sample categories (fecal contaminant, ingesta
contaminant,  bare rubber belt, and bare stainless steel) were
analyzed using t‐tests (SigmaPlot 8.0, SPSS Inc., Chicago,

Ill.) with statistical significance considered at P‐values
below 0.05.

RESULTS AND DISCUSSION
DISCRIMINATION OF CONTAMINANT SAMPLES FROM

BACKGROUND AREAS USING VISIBLE SPECTRA
Figure 2 shows the average log(1/R) values ± one standard

deviation, for (a) fecal contaminants, (b) ingesta
contaminants,  (c) bare rubber belt areas, and (d) bare
stainless steel areas, in the 450‐ to 780‐nm region, which
contains the color information for the samples. While the
bare rubber belt and bare stainless steel surfaces consistently
presented white and metallic gray appearances, respectively,
the appearance of the fecal contaminant samples spanned a
range of light and dark colors from yellow‐orange to brown,
and the colors of the ingesta contaminant samples ranged
from light‐green to light‐yellow. Constituents from
undigested feed material (such as chlorophylls and
carotenoids) and constituents from the digestion process
(such as bile pigments formed from dead red blood cells)
contributed to the composition of the fecal and ingesta
contaminant  samples, which thus varied greatly in color,
consistency, and texture. Consequently, distinct spectral
differences can be observed between the contaminants and
bare equipment surfaces. For example, both contaminant
types show a similar slope in their average spectra between
500 and 600 nm, and the ingesta contaminant spectrum shows
a characteristic band near 700 nm assignable to chlorophyll
components. The average spectrum for bare rubber shows a
broad, weak band near 600 nm. In contrast, the average
spectrum for bare stainless steel lacks any notable bands
between 500 and 750 nm, appearing to be quite flat. The bare
stainless steel samples also tended to show the highest
log(1/R) values across all wavelengths as a result of the
specular character of its surface reflectance, while the more
diffuse reflection of the bare rubber belt surfaces tended to
result in weaker log(1/R) value across all wavelengths.

With the entire set of 221 spectra, the PLSplus/IQ package
in Grams/32 was used to perform PCA. Five principal
components (PCs) were found to account for 97.7% of the
total variation; the first three of these explained 93.5% of that
variation, with 81.1% for PC1, 8.7% for PC2, and 3.8% for
PC3. The score plot in figure 3 shows that a large negative
PC1 value easily separated the stainless steel samples from
the other three groups, and that most of the rubber belt
samples were separable from the contaminant samples by
their combination of positive PC1 and negative PC2 scores.
Thus, the fecal and ingesta contaminant samples were mostly
separable from the equipment surfaces but were difficult to
differentiate from each other, as both contaminant types were
characterized  by similar positive PC1 and PC2 scores.

Using the validation set of visible spectra, classification
models were developed using 2‐class SIMCA analysis based
on contaminant and bare equipment classes. The optimal
classification model was found to use three factors and two
factors for the contaminant class and the equipment class,
respectively. By assignment according to shorter
Mahalanobis distance, the classification model identified
91% of the contaminant samples and 89% of equipment
samples correctly in the cross‐validation data set. When
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Figure 2. Average visible reflectance spectra (±1 standard deviation envelope) in the 450‐ to 780‐nm region of (a) fecal contaminants, (b) ingesta
contaminants, (c) rubber belt areas, and (d) stainless steel areas.

applied to the test data set, the model correctly classified 83%
of contaminant samples and 81% of equipment samples.

Using the STEPDISC procedure, three potential visible
wavelength pairs were selected for investigation, for
separating the contaminant samples from the bare equipment
surface samples by using threshold values of these
two‐wavelength ratios. Table 1 lists the classification results
for these visible wavelength pairs for both the validation data
set and the test data set using a threshold value of 1.15 as
shown in figure 4. The wavelength pair of 518 and 576 nm
achieved the highest overall separation: 100% for
contaminants (above the threshold value 1.15) and 92.5% for
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Figure 3. PC1 vs. PC2 score‐score plot for visible spectra of fecal
contaminants, ingesta contaminants, rubber belt areas, and stainless steel
areas.

equipment areas (below the threshold value 1.15) across the
entire data set (validation and test sets combined). Only six
rubber belt samples were misclassified with this wavelength
pair and threshold value.

DISCRIMINATION OF CONTAMINANT SAMPLES FROM

BACKGROUND AREAS USING NIR SPECTRA
Figure 5 shows the average log(1/R) values ± 1 standard

deviation for (a) fecal contaminants, (b) ingesta
contaminants,  (c) bare rubber belt areas, and (d) bare
stainless steel areas, in the 920‐ to 1680‐nm NIR region.
Generally, NIR bands such as those observed for the
contaminant  and rubber belt areas at 980, 1195, and 1450 nm
arise from first and second overtones and combinations of
O‐H, N‐H, and C‐H stretching vibrations (Osborne et al.,
1993). Like the visible spectra in figure 2, the NIR spectra in
figure 5 show that the stainless steel areas had the highest
log(1/R) values, followed by the fecal contaminant, ingesta

Table 1. Selected visible and NIR wavelength pairs for 
band‐ratio classification of contaminant and equipment 

samples in the validation and test data sets.

Classification by Two‐Wavelength Band‐Ratio, Αλ1/Αλ2

Visible Band Ratios Near‐Infrared Band Ratios

λ1, λ2
(nm)

Validation
(%)

Test
(%)

λ1, λ2
(nm)

Validation
(%)

Test
(%)

518, 576 97.3 97.2 1565, 1645 98.6 97.2

470, 590 95.3 93.0 1500, 1665 98.6 95.8

450, 700 90.6 88.9 1450, 1670 95.3 95.8
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Figure 4. Visible band ratio values for classification by A518 nm/A576 nm,
for (1) fecal contaminants, (2) ingesta contaminants, (3) rubber belt areas,
and (4) stainless steel areas.

contaminant, and rubber belt areas. Again, the stainless steel
exhibited a relatively flat spectrum with no obvious band
characteristics except for the noise‐related features at the
beginning and end of the spectrum. The bare rubber belt
spectra show the lowest overall log(1/R) values and also a
band feature near 1665 nm that contributes to a spectral
profile between 1500 and 1680 quite distinct from that of the
fecal and ingesta contaminant spectra, which show decreases
in log(1/R) values between 1500 and 1680 nm similar to each
other.

PCA was again performed, using the entire set of 221 NIR
spectra. Three PCs were found to account for 98.3% of the
total variation; the first two PCs explained over 97.0% of that
variation, with 87.0% for PC1 and 10.0% for PC2. Due to

large positive PC1 scores, the stainless steel group was
clearly isolated from the other three groups. The score plot in
figure 6 shows that, with the three remaining groups, an
appropriately chosen negative PC1 value near –0.022 can
separate most of the rubber belt samples from the ingesta
contaminant  and fecal contaminant samples. The two
contaminant  groups, however, could not be clearly separated
using PC1 or PC2 values.

Using the validation set of NIR spectra, classification
models were developed using 2‐class SIMCA analysis based
on contaminant and bare equipment classes. The optimal
classification model was found to use two factors and three
factors for the contaminant class and the equipment class,
respectively. By assignment according to shorter
Mahalanobis distance, the classification model correctly
identified 82% of the contaminant samples and 85% of
equipment samples in the validation data set. When applied
to the test data set, the model correctly classified 87% of
contaminant  samples and 77% of equipment samples.

Using the STEPDISC procedure, three potential NIR
wavelength pairs were selected for investigation, for
separating the contaminant samples from the bare equipment
surface samples by using threshold values of these
two‐wavelength ratios. Table 1 lists the classification results
for these wavelength pairs for both the validation data set and
the test data set using a threshold value of 1.08 as shown in
figure 7. The wavelength pair of 1565 and 1645 nm achieved
the highest overall separation: 100% for contaminants (above
the threshold value 1.08) and 95.0% for equipment areas
(below the threshold value 1.08) across the entire data set
(validation and test sets combined), with only four rubber belt
samples misclassified.
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Figure 5. Average NIR reflectance spectra (±1 standard deviation envelope) in the 920‐ to 1680‐nm region of (a) fecal contaminants, (b) ingesta
contaminants, (c) rubber belt areas, and (d) stainless steel areas.
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Figure 6. PC1 vs. PC2 score‐score plot for NIR spectra of fecal
contaminants, ingesta contaminants, and rubber belt areas.

BACTERIAL COUNTS FROM MICROBIOLOGICAL SAMPLE

ANALYSIS
The mean EBC (log10 cfu/mL), ± standard error of

measurement,  for the four sample categories were found to
be 4.2903 ± 0.0829 for fecal contaminants (n = 82), 0.1886
± 0.0421 for ingesta contaminants (n = 59), 0.0940 ± 0.0157
for bare rubber areas (n = 40), and 0.0516 ± 0.0199 for
stainless steel areas (n = 40). These mean EBC values were
compared, in pairs, using a t‐test with significance levels of
P < 0.05. The fecal contaminant EBC was found to be
significantly higher than the EBC for each of the other three
categories.  The ingesta contaminant EBC was significantly
different from the stainless steel EBC (P = 0.022), but not
from rubber belt EBC (P = 0.059). The rubber belt EBC and
stainless steel EBC were not significantly different (P =
0.095).

Comparison of the low EBC for ingesta contaminants to
the higher EBC for fecal contaminants, as shown in figure 8,
suggest that ingesta contaminants do not present the same
food safety risks as fecal contaminants do. However, since
ingesta contaminants visually resemble fecal contaminants,
ingesta contaminants are more safely considered as a
contaminant  for food safety purposes of spectral contaminant
detection for sanitation monitoring. Compared to the rubber
belt EBC values, the slightly lower EBC values for stainless
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Figure 7. Near‐infrared band ratio values for the classification by
A1565 nm/A1645 nm, for (1) fecal contaminants, (2) ingesta contaminants,
(3) rubber belt areas, and (4) stainless steel areas.
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Figure 8. Enterobacteriaceae counts (EBC) for (1) fecal contaminants, (2)
ingesta contaminants, (3) rubber belt areas, and (4) stainless steel areas.

steel surfaces may result from steel being easier to clean and
disinfect than polymeric and rubber surfaces (Krysinski
et al., 1992; Ronner and Wong, 1993).

CONCLUSIONS
This study found that the visible band ratio using the 518‐

and 576‐nm wavelength pair and the NIR band ratio using the
1565‐ and 1645‐nm wavelength pair were both able to
identify 100% of fecal and ingesta contaminants. The bare
stainless steel surfaces were easily differentiated from the
contaminant  samples, but a small percentage of bare rubber
belt surfaces were misclassified by both the visible and NIR
band ratios. The NIR ratio performed slightly better,
achieving 95.0% correct identification for bare equipment
surfaces, while the visible ratio achieved 92.5%. Both band
ratios performed better in separating contaminants from
equipment surfaces than did visible and NIR SIMCA models.
Microbiological  analysis of contaminant and equipment
surface samples showed significant EBC values for fecal
contaminant  samples, compared to the other three sample
types. Compared to fecal contaminants, ingesta
contaminants showed significantly lower EBC values, but
were not easily differentiated spectrally. Consequently, for
the development of a device implementing these Vis/NIR
waveband ratios for rapid and accurate surface sanitation
verification purposes, fecal and ingesta contaminants should
be included together for target detection.
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