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Abstract 

The varying spectral distribution of the terrestrial irradiance can cause significant differences between 
the actual  and the rated efficiency of solar cells. To account for this effect it is necessary to calculate 
the weighted irradiance which depends on the solar cell spectral response and on the spectral 
distribution of the irradiance. Because ground based spectral measurements are sparse, satellite 
based spectral data can provide a good alternative. In this work we have compared two approaches. 

The SOLIS method can calculate both broadband and spectrally resolved terrestrial solar irradiance 
from satellite data. The clear sky module of SOLIS is based on a partial parametrisation of radiative 
transfer calculations, and uses atmospheric data from climatologies or satellite based methods. The 
cloud module is based on empirical relationships between the  cloud albedo values determined from 
Meteosat visual channels and the cloud transmittance. In parallel we developed a simpler empirical 
method, that can be more easily implemented in photovoltaic modelling software.  It is based on 
principal component analysis of measured spectrally resolved irradiance and empirical relationships 
between the principal components and satellite derived clear sky index and sun elevation.

Both methods have been validated using the same ground measured data from Stuttgart Germany. 
The weighted irradiance has been used as metrics to compare the results of the models. It was found 
that the use of both models gave a significant improvement compared to the use of a constant AM1.5 
spectrum. The use of the empirical model resulted in lower bias values, the use of SOLIS  resulted in 
lower RMSE values. 

INTRODUCTION

Spectrally resolved solar irradiance data are an essential input for a variety of applications such as the 
modelling of plant growth, climate modelling and the simulation of photovoltaic solar energy systems. 
In this paper we will focus on the latter, but the models themselves are not limited to this application.

The rated efficiency of a photovoltaic module is measured using the standard AM 1.5 spectrum [1]. In 
contrast, the spectrum experienced under working conditions will have strong temporal and spatial 
variations. Especially for solar cells with a narrow spectral response such as amorphous silicon (see 
Fig. 1), this implies that the efficiency in the field can differ considerably from laboratory results and 
annual yields can vary up to 10% from expected values [6][15]. Measurements of the spectral 
distribution of solar irradiance are however too scarce to be used for the simulation of an arbitrary PV 
system. Spectral models based on satellite data therefore provide a potential alternative. 

At Oldenburg University two such models have been developed. The SOLIS model [2][14] is based on 
radiative transfer modelling and has the potential  for a higher accuracy. A new empirical model is 
expected to be less accurate than SOLIS, but its simplicity allows integration in PV simulation 
software. 

The goal of this work is to validate the two spectral methods, and compare the results. In the following 
sections we will present the used data, introduce the metrics for the validation, introduce the two 
spectral models, present and discuss the validations results, and finally present the conclusions.



DATA

For this work we used two data sets consisting of one year of spectral measurements. Both are 
described in Table 1.  To make them comparable they were averaged to hourly values. The 
Loughborough data set was only used as learning dataset for the empirical spectral model. The 
Stuttgart dataset was used for the validation of both models. Both data sets were quality checked by 
the institutes that carried out the measurements.

SPECTRAL EFFECT ON SOLAR CELLS

The efficiency of solar cells is rated under standard test conditions using the so-called AM1.5 
spectrum. However, under field conditions the efficiency of solar cells depends on the spectral 
distribution of the irradiance and the spectral response of the applied material. The spectral response 
SR(λ) of solar cells is defined by the response of the short cut current to different wavelengths. 
Examples for four types of solar cells are shown in Fig. 1.   

When the normalised spectral irradiance n(λ) and SR(λ) are known the short circuit current (Isc) can 

be calculated from the rated short circuit current (ISC,AM1.5) using:

ISC=iSMMF⋅I SC, AM1.5=I SC,AM1.5⋅
∫ SR  λ n λ dλ

∫SR λnAM1.5  λ dλ
 (1)

where iSMMF is the inverse spectral mismatch factor. In a first approximation the maximum power 
output Pmpp of a solar cell is proportional to ISC.. We therefore define the weighted irradiance GW as a 
measure for the spectral effect on the power output of a PV system: 

Dataset Loughborough Stuttgart

Location 52.77°N, -1.23°E 48.75°N, 9.11°E

Provided by CREST, Loughborough
University [5] 

IPE, Stuttgart University

Period sept 2003- Aug 2004 2008

Apparatus Horiba, custom build Stellarnet EPP 2000C UV-VIS, 
EPP 2000 NIR INGAS

Temporal resolution 2 min. scan, 
every 10min.

1 min. scan every min.,
delivered as 15 min. average

Spectral resolution 10 nm 1 nm

Spectral range 300 to 1700 nm 300 to 1700 nm

Orientation  20◦ East South

Tilt 52° 33°

Completeness original data 35 % 98 %

Completeness hourly data 40 % 97 %

Table 1: Description of the datasets used for this investigation. Note that the difference in completeness between the 
original and the hourly data is caused by the fact that only hours with at least two data points have been used for the 
hourly average.

Figure 1: AM1.5 spectrum and the spectral response of four types of solar cells



GW≡iSMMF⋅G  (2)

Furthermore, it can be shown, that the effect of non-STC spectra can be accounted for by replacing G 
with GW as an input for photovoltaic system models [3].  We shall therefore use GW  to assess the 
accuracy of the spectral models. 

HELIOSAT

Both spectral models presented in this paper depend on the Heliosat method [5] to provide information 
on cloud transmittance.  The method uses albedo data measured by geostationary satellites as input. 
The method consists on three major steps. In the first step a statistical analysis is carried out on a time 
series of reflectance values to identify clear sky time slots and determine the ground albedo. This 
process is carried out for each individual pixel. The second step calculates the so-called cloud index n 
from the apparent albedo  , the ground albedo G and the maximum cloud albedo C .

n=
−G

C−G

(3)

Subsequently an empirical piecewise linear relationship is used to calculate the clear sky index kt
* from 

n. The clear sky index is a parameter for the transmittance of clouds and is defined by defined by:

k t
*≡

G
Gclear

 (4)

where: G is the global irradiance and Gclear is the global irradiance in the absence of clouds.  To 
account for the difference between total overcast situations and broken cloud situations we applied the 
spatial variability correction developed by Lorenz [12]. By combining kt

* derived from the Heliosat 
method with the clear sky irradiance derived from a clear sky model the global irradiance can be 
calculated.  

For the Loughborough calculations the data of the visual channel of the MVIRI instrument aboard 
Meteosat 7 was used, for the Stuttgart calculations the high resolution visual channel of the SEVERI 
instrument aboard Meteosat 8 and Meteosat 9 were used. The adaptation of the Heliosat method to 
the MSG-SEVIRI instrument is described by Kuhlemann and Hammer [11]. 

SOLIS 

The SOLIS method is able to calculate both broadband and spectrally resolved irradiance from 
satellite data by combining the spectrally resolved clear sky irradiance from the SOLIS-Clearsky 
module with the clear sky index of the Heliosat method. An overview on the different modelling steps is 
given in Fig. 2. 

SOLIS-Clearsky [14] module uses the correlated k method [8] as implemented in libRadtran [13] to 
calculate the spectrally resolved irradiance for solar zenith angles (z) of 0° and 60°. The spectrum is 
divided into 32 bands of different widths, so called “Kato bands” between 250 nm and 4600 nm in 
which the absorption coefficient of different gases is almost constant. Climatological data on aerosol, 
ozone, and water vapour content of the atmosphere serve as input (see Table 2).  By fitting the 
modified Lambert Beer equations to the libRadtran output, and using the found fitparameters to extend 
the results to other values of z:

Eclear =E0⋅e

−0

cos a
 z⋅cos z

 (5)

where: Eclear() is the spectrally resolved clear sky irradiance, E0() is the  extraterrestrial spectral 
irradiance, 0 is the optical depth and a is the modified Lambert Beer parameter. A similar equation is 
used for the direct irradiance. 

To obtain the spectrally resolved irradiance under cloudy conditions the clear sky spectral irradiance is 



multiplied with the clear sky index and a cloud spectral correction CSC(, kt*). The latter is based on a 
parametrisation of radiative transfer calculations.

Ehor =k t
*
⋅CSC  , k t

*
⋅E clear   (6)

Tilt Conversion

PV-modules are mostly placed on a tilted plane facing the equator.  The horizontal spectral irradiance 
therefore has to be converted to this tilted plane. It consists of the direct, ground reflected and diffuse 
component. The direct component can be calculated from geometric considerations. An isotropic 
reflection is assumed for the ground reflected component. The diffuse component is calculated using 
the Klucher model [10]. All calculations are carried out for each Kato band separately.

EMPIRICAL  SPECTRAL MODEL BASED ON PRINCIPAL COMPONENT ANALYSIS

The basic set-up of the empirical model is to describe the spectral distribution with a small set of 
parameters and determine an empirical relationship between these parameters and the clear sky 
index and the solar elevation. If the parameters are chosen in such a way that they can be 
transformed back to a spectral distribution with an acceptable accuracy loss, the spectral distribution 
can be calculated from the clear sky index and the solar elevation. 

Principal Component Analysis of the spectral distribution

Considering the normalised spectral irradiance as a set of 141 correlated variables, we are looking to 
a linear transformation that maps these onto a new set of parameters that are uncorrelated. These so-
called principal components can be found by first determining the eigenvectors of the covariance of 
the normalised spectrum [7]:

Atmospheric 
constituent

properties database Spatial 
resolution

Temporal 
resolution

Aerosols AOD,
single scattering albedo

AEROCOM [9] 1° x 1° Monthly

Water vapour column NVAP [16] 2.5°x2.5° Monthly

Ozone column LibRadtran default

Table 2: Input used for the SOLIS Clear sky calculations.

Figure 2: Flow diagram of the SOLIS model. Figure 3: Flow diagram of the empirical 
spectral model.



C ije jL=LeiL   with C ij=cov nit ,n jt=
∑

t

N t

nit−nin jt−n j 

N t−1
(7)

where: Cij is the covariance matrix L is the Lth eigenvalue, (ei)L is the Lth eigenvector, n it=n i ,t 
is the normalised spectrum, n i  is the temporal average of the normalised spectrum, and Nt is the 
number of points in the time series.

The principal components are then defined by the inner-product of the eigenvectors and the 
normalised spectral irradiance:

PC it =∑ j=1

140
T ij n jt−n j=∑j=1

140
e jin jt−n j  (8)

The eigenvalues L equal the variance described by the corresponding principal component. By 
sorting the eigenvalue-PC pairs by the magnitude of the eigenvalue in decreasing order, the lowest 
numbered principal component has the largest information content. Application to the Loughborough 
dataset shows that the first two PCs together describe more than 80% of the total variance.  We use 
these two PCs to efficiently describe the spectrum.  An approximated value for the spectrum can be 
obtained by applying the reverse of the transformation of Eq. 8:

ni
approxt =ni∑ j=1

M
T ji PC j=ni∑ j=1

M
ei  j PC j

 (9)

where n i
approx  is the approximated normalised irradiance, and M is the number of PCs to be 

considered. For our model we choose M=2.

When Eq. 8, with Tij and n i  derived from the Loughborough dataset, is applied to the spectral 
irradiance from Stuttgart, the first two PCs still describe 78% of the variance [3].  This means that the 
transformation can be carried over to other locations with an acceptable additional information loss. 

Empirical relationship

Having established that two principal components can describe the spectrum with an acceptable 
accuracy, we investigated the relationship between the two principal components of the Loughborough 
dataset and kt

* and the sun elevation .  The relationship can be described in a good approximation 
with the polynomial : 

PC i=∑n=0

N

∑m=0

M
a inm k t

*n


m  (10)

where:  N=3 and M=2 for cases when the sun is in front of the module and M=1 in case sun is behind 
the module.  The fit coefficients ainm are given in Betcke et al. [3].

With a known average normalised spectrum and known covariance eigenvectors of the spectrum can 
be determined from these empirical PCs. To investigate if these relationships are also valid at other 
locations we used equations 10 and 9 with values for Tij, n i  and ainm derived at Loughborough, to 

values of kt
* and  determined for Stuttgart. The results are discussed in the next section.

RESULTS AND DISCUSSION

Normalised spectrum

We used SOLIS and the empirical  model to calculate an hourly time series of normalised irradiance at 
the tilted plane in Stuttgart for the year 2008.   The results of the models were analysed using the MBE 
and RMSE per 10nm wavelength band:

MBE=
∑

t=1

N t

nt
model−nt

meas 

N t

   
RMSE =∑t=1

N
t

nt
model

−nt
meas

 
2

N t

(11)



For the models to have any value they should perform better than a constant AM1.5 spectrum. This is 
therefore used as a reference model.

The MBE() for the three models are shown in Fig. 4.  The SOLIS model shows very high values at 
isolated peaks and at wavelengths from 700nm.  This is mainly due to the lower spectral resolution of 
the model results. Especially at higher wavelengths the Kato bands become too wide to describe the 
10 nm resolution data.  The isolated extreme MBE values correspond with the edges of the Kato 
bands.

The empirical model outperforms the AM1.5 spectrum for the larger part of the wavelength range. A 
first exception is the range below 380 nm. This is likely due to calibration difficulties at the learning 
data set [2].  Furthermore, there are isolated extremes, that occur where the spectrum shows strong 
gradients. The most notable occurs at 780 nm, which corresponds with the oxygen absorption band. 
These are caused by the difference in spectral resolution of the original data between the 
Loughborough and Stuttgart data set. The Loughborough data were measured at 10 nm intervals, 
whereas the Stuttgart data were measured at 1 nm intervals and later averaged to 10nm datasets.

The RMSE() for the three models are shown in Fig. 5. In the range below 600 nm the SOLIS model 
outperforms both the AM1.5 as the empirical model. This means that it is better in describing the 
temporal dynamics in this range. Further improvements are expected if up-to-date atmospheric data 
are used, rather than climatologies.  The range above 800 nm is again dominated by the errors 
caused by the wide Kato bands. This suggests that the results of the model can be be improved by 
choosing narrower bands in the higher wavelength ranges. 

The empirical model gives improvements compared to the AM1.5 spectrum in the ranges between 380 
an 600 nm  and above 1100 nm. The artefacts originating from the learning data set described for the 
MBE are also visible in the RMSE. Most likely results can be improved by choosing another learning 
data set. In the range below 600 nm the RMSE of the empirical model is higher than that of SOLIS. 
This reflects that the exclusion of the influence atmospheric composition, limit its capability to 
reproduce the temporal variations of the spectrum. Overall it can be concluded that, with the current 
set-up of the models, the empirical model gives the best results for a high resolution description of the 
normalised spectrum.  

Figure 5: RMSE of the normalised spectral irradiance.

Figure 4: MBE of the normalised spectral irradiance.



Weighted irradiance

To investigate the suitability of the two models for the intended application we used their output to 
calculate the weighted irradiance defined in Eq. 2 for the types of solar cells displayed in Fig. 1.
The values for G were taken from the measurements. We compared the results with GW calculated 
directly from the measurements in Stuttgart, and calculated the relative MBE and RMSE.

The MBE results in Fig. 6 show that ignoring the spectral effect, i.e assuming a constant AM1.5 
spectral distribution, causes an underestimation of the annual GW ranging from 1.7% for CIGS to 3.3% 
for a-Si solar cells.  In contrast to the results for the normalised spectrum, both models give 
considerable improvements upon this use of the AM1.5 spectrum. The difference in results is caused 
by the weighing with G, because both models are better in describing the spectral distribution for 
higher values of G. Furthermore it can be seen that, except for the amorphous silicon solar cell (a-Si), 
the empirical model gives a better result than the SOLIS model. 

The RMSE results in Fig. 7 also show significant improvements for both models compared to the 
constant AM1.5 spectrum. The SOLIS model gives a significantly better result for a-Si, compared to 
the empirical model. This is caused by the coincidence of the spectral response range of a-Si with the 
range where the Kato bands are narrow and the SOLIS results are the best. For the other solar cell 
types the differences are small. 

CONCLUSIONS 

Ignoring spectral effects in the simulation of photovoltaic solar energy systems can lead to substantial 
errors in the calculated  yield of photovoltaic systems. In our calculations we found underestimations 
up to 3% of the weighted irradiance, which is a first estimate of the spectral effect on the system 
output. 

Spectral models based on cloud data derived from Meteosat are able to  provide the spectral data. We 
presented the SOLIS model, which is based on radiative transfer calculations, and a new empirical 
model based on principal component analysis of the normalised spectrum. Both models were 
validated on one year of hourly spectral data on a tilted plane in Stuttgart Germany. The empirical 
model gave the most accurate results for the description of the normalised spectrum. Both models 
give substantial accuracy improvements for the accuracy of the weighted irradiance, and hence the 
power output, of four types of solar cells. The empirical model is more effective in reducing the MBE, 
the SOLIS model is more effective in reducing the RMSE.

Improvements for the SOLIS method are expected by using instantaneous and high resolution values 
for the atmospheric parameters, and by using narrower spectral bands. Improvements for the 

Figure 6 : MBE of the weighted irradiance for four types of 
solar cells.

Figure 7: RMSE of the weighted irradiance for four types 
of solar cells.



empirical model are expected by improvements in the learning dataset, inclusion of the effect of tilt and 
orientation, and by extending the model with the influences of the atmospheric composition.
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